Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nanoapplication of a Resistance Inducer to Reduce Phytophthora Disease in Pineapple (Ananas comosus L.).

Identifieur interne : 000448 ( Main/Exploration ); précédent : 000447; suivant : 000449

Nanoapplication of a Resistance Inducer to Reduce Phytophthora Disease in Pineapple (Ananas comosus L.).

Auteurs : Xinhua Lu [République populaire de Chine, Australie] ; Dequan Sun [République populaire de Chine] ; James E. Rookes [Australie] ; Lingxue Kong [Australie] ; Xiumei Zhang [République populaire de Chine] ; David M. Cahill [Australie]

Source :

RBID : pubmed:31681361

Abstract

Treatment of plants with a variety of abiotic and biotic inducers causes induced resistance to pathogen attack. In this study, the effect of four resistance inducers on plant diseases caused by Phytophthora cinnamomi was screened in vivo initially by using lupin, a susceptible model plant. Lupin pretreated with 0.5 mM salicylic acid (SA) showed effective resistance against P. cinnamomi with restricted lesions. Then, mesoporous silica nanoparticles (MSNs) with particle size around 20 nm and approximate pore size of 3.0 nm were synthesized and functionalized for loading and importing SA to pineapple plantlets. Decanethiol gatekeepers were introduced to the surface of MSNs via glutathione (GSH)-cleavable disulfide linkages to cover the pore entrance, which was confirmed through using Raman spectroscopy. Through free diffusion, the loading efficiency of SA in MSNs gated with gatekeepers was 11.7%, but was lower in MSNs without gatekeepers (8.0%). In addition, in vitro release profile of SA from gatekeeper-capped MSNs indicated that higher concentrations of GSH resulted in more cargo release. Moreover, the experiments in planta showed that the application of MSNs as a resistance inducer delivery system significantly improved pineapple resistance to P. cinnamomi in terms of inhibiting lesion development and improving root growth of infected plants, compared to the use of free SA and MSNs without gatekeepers. The analysis of SA, GSH, and defense-related genes, of PR1 and PR5, further confirmed that the slow and prolonged release of SA from MSNs inside the roots of pineapple plants was achieved through a redox-stimuli release mechanism. Therefore, the application of MSNs with redox-responsive gatekeepers has shown great potential as an efficient tool for delivering chemicals into plants in a controllable way.

DOI: 10.3389/fpls.2019.01238
PubMed: 31681361
PubMed Central: PMC6797602


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nanoapplication of a Resistance Inducer to Reduce
<i>Phytophthora</i>
Disease in Pineapple (
<i>Ananas comosus</i>
L.).</title>
<author>
<name sortKey="Lu, Xinhua" sort="Lu, Xinhua" uniqKey="Lu X" first="Xinhua" last="Lu">Xinhua Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang</wicri:regionArea>
<wicri:noRegion>Zhanjiang</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Dequan" sort="Sun, Dequan" uniqKey="Sun D" first="Dequan" last="Sun">Dequan Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang</wicri:regionArea>
<wicri:noRegion>Zhanjiang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rookes, James E" sort="Rookes, James E" uniqKey="Rookes J" first="James E" last="Rookes">James E. Rookes</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kong, Lingxue" sort="Kong, Lingxue" uniqKey="Kong L" first="Lingxue" last="Kong">Lingxue Kong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Frontier Materials, Deakin University, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Institute for Frontier Materials, Deakin University, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xiumei" sort="Zhang, Xiumei" uniqKey="Zhang X" first="Xiumei" last="Zhang">Xiumei Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang</wicri:regionArea>
<wicri:noRegion>Zhanjiang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cahill, David M" sort="Cahill, David M" uniqKey="Cahill D" first="David M" last="Cahill">David M. Cahill</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31681361</idno>
<idno type="pmid">31681361</idno>
<idno type="doi">10.3389/fpls.2019.01238</idno>
<idno type="pmc">PMC6797602</idno>
<idno type="wicri:Area/Main/Corpus">000355</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000355</idno>
<idno type="wicri:Area/Main/Curation">000355</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000355</idno>
<idno type="wicri:Area/Main/Exploration">000355</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nanoapplication of a Resistance Inducer to Reduce
<i>Phytophthora</i>
Disease in Pineapple (
<i>Ananas comosus</i>
L.).</title>
<author>
<name sortKey="Lu, Xinhua" sort="Lu, Xinhua" uniqKey="Lu X" first="Xinhua" last="Lu">Xinhua Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang</wicri:regionArea>
<wicri:noRegion>Zhanjiang</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Dequan" sort="Sun, Dequan" uniqKey="Sun D" first="Dequan" last="Sun">Dequan Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang</wicri:regionArea>
<wicri:noRegion>Zhanjiang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rookes, James E" sort="Rookes, James E" uniqKey="Rookes J" first="James E" last="Rookes">James E. Rookes</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kong, Lingxue" sort="Kong, Lingxue" uniqKey="Kong L" first="Lingxue" last="Kong">Lingxue Kong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Frontier Materials, Deakin University, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Institute for Frontier Materials, Deakin University, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xiumei" sort="Zhang, Xiumei" uniqKey="Zhang X" first="Xiumei" last="Zhang">Xiumei Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang</wicri:regionArea>
<wicri:noRegion>Zhanjiang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cahill, David M" sort="Cahill, David M" uniqKey="Cahill D" first="David M" last="Cahill">David M. Cahill</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Life and Environmental Sciences, Deakin University, Geelong, VIC</wicri:regionArea>
<wicri:noRegion>VIC</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Treatment of plants with a variety of abiotic and biotic inducers causes induced resistance to pathogen attack. In this study, the effect of four resistance inducers on plant diseases caused by
<i>Phytophthora cinnamomi</i>
was screened
<i>in vivo</i>
initially by using lupin, a susceptible model plant. Lupin pretreated with 0.5 mM salicylic acid (SA) showed effective resistance against
<i>P. cinnamomi</i>
with restricted lesions. Then, mesoporous silica nanoparticles (MSNs) with particle size around 20 nm and approximate pore size of 3.0 nm were synthesized and functionalized for loading and importing SA to pineapple plantlets. Decanethiol gatekeepers were introduced to the surface of MSNs
<i>via</i>
glutathione (GSH)-cleavable disulfide linkages to cover the pore entrance, which was confirmed through using Raman spectroscopy. Through free diffusion, the loading efficiency of SA in MSNs gated with gatekeepers was 11.7%, but was lower in MSNs without gatekeepers (8.0%). In addition,
<i>in vitro</i>
release profile of SA from gatekeeper-capped MSNs indicated that higher concentrations of GSH resulted in more cargo release. Moreover, the experiments
<i>in planta</i>
showed that the application of MSNs as a resistance inducer delivery system significantly improved pineapple resistance to
<i>P. cinnamomi</i>
in terms of inhibiting lesion development and improving root growth of infected plants, compared to the use of free SA and MSNs without gatekeepers. The analysis of SA, GSH, and defense-related genes, of
<i>PR1</i>
and
<i>PR5</i>
, further confirmed that the slow and prolonged release of SA from MSNs inside the roots of pineapple plants was achieved through a redox-stimuli release mechanism. Therefore, the application of MSNs with redox-responsive gatekeepers has shown great potential as an efficient tool for delivering chemicals into plants in a controllable way.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31681361</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Nanoapplication of a Resistance Inducer to Reduce
<i>Phytophthora</i>
Disease in Pineapple (
<i>Ananas comosus</i>
L.).</ArticleTitle>
<Pagination>
<MedlinePgn>1238</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2019.01238</ELocationID>
<Abstract>
<AbstractText>Treatment of plants with a variety of abiotic and biotic inducers causes induced resistance to pathogen attack. In this study, the effect of four resistance inducers on plant diseases caused by
<i>Phytophthora cinnamomi</i>
was screened
<i>in vivo</i>
initially by using lupin, a susceptible model plant. Lupin pretreated with 0.5 mM salicylic acid (SA) showed effective resistance against
<i>P. cinnamomi</i>
with restricted lesions. Then, mesoporous silica nanoparticles (MSNs) with particle size around 20 nm and approximate pore size of 3.0 nm were synthesized and functionalized for loading and importing SA to pineapple plantlets. Decanethiol gatekeepers were introduced to the surface of MSNs
<i>via</i>
glutathione (GSH)-cleavable disulfide linkages to cover the pore entrance, which was confirmed through using Raman spectroscopy. Through free diffusion, the loading efficiency of SA in MSNs gated with gatekeepers was 11.7%, but was lower in MSNs without gatekeepers (8.0%). In addition,
<i>in vitro</i>
release profile of SA from gatekeeper-capped MSNs indicated that higher concentrations of GSH resulted in more cargo release. Moreover, the experiments
<i>in planta</i>
showed that the application of MSNs as a resistance inducer delivery system significantly improved pineapple resistance to
<i>P. cinnamomi</i>
in terms of inhibiting lesion development and improving root growth of infected plants, compared to the use of free SA and MSNs without gatekeepers. The analysis of SA, GSH, and defense-related genes, of
<i>PR1</i>
and
<i>PR5</i>
, further confirmed that the slow and prolonged release of SA from MSNs inside the roots of pineapple plants was achieved through a redox-stimuli release mechanism. Therefore, the application of MSNs with redox-responsive gatekeepers has shown great potential as an efficient tool for delivering chemicals into plants in a controllable way.</AbstractText>
<CopyrightInformation>Copyright © 2019 Lu, Sun, Rookes, Kong, Zhang and Cahill.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Xinhua</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Dequan</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rookes</LastName>
<ForeName>James E</ForeName>
<Initials>JE</Initials>
<AffiliationInfo>
<Affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kong</LastName>
<ForeName>Lingxue</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Institute for Frontier Materials, Deakin University, Geelong, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xiumei</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cahill</LastName>
<ForeName>David M</ForeName>
<Initials>DM</Initials>
<AffiliationInfo>
<Affiliation>School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Phytophthora</Keyword>
<Keyword MajorTopicYN="N">gatekeeper</Keyword>
<Keyword MajorTopicYN="N">mesoporous silica nanoparticles</Keyword>
<Keyword MajorTopicYN="N">pineapple</Keyword>
<Keyword MajorTopicYN="N">resistance inducers</Keyword>
<Keyword MajorTopicYN="N">salicylic acid</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31681361</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2019.01238</ArticleId>
<ArticleId IdType="pmc">PMC6797602</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Nanosci Nanotechnol. 2018 Mar 1;18(3):1615-1625</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29448638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2014 Aug;33(8):1389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24820127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Oct 20;5:566</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25368627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IET Nanobiotechnol. 2014 Sep;8(3):133-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25082220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 2007 Mar;84(3):493-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17196965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17554-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17082308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Mar;64(5):1263-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23386685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):1082-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2017 Jan;110:70-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27470120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanotechnol Sci Appl. 2014 Aug 04;7:63-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25187699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2018 Jul 5;66(26):6594-6603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28640597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2017 Apr;23(4):1661-1674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27596590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(8):1795-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2016 Jun;152:81-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26963239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2017 Sep;24(27):21917-21928</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28780690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanomaterials (Basel). 2016 Jun 28;6(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28335254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Jun;6(6):783-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21969955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2015 May 13;7(18):9937-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25902154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2014 Jun 23;19(6):8518-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24959679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Feb;19(2):260-285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28519717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2014 Feb 15;171(3-4):189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23948674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2016 Jun 8;8(22):13748-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27191965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2010 Jun;5(6):986-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20448544</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Lu, Xinhua" sort="Lu, Xinhua" uniqKey="Lu X" first="Xinhua" last="Lu">Xinhua Lu</name>
</noRegion>
<name sortKey="Sun, Dequan" sort="Sun, Dequan" uniqKey="Sun D" first="Dequan" last="Sun">Dequan Sun</name>
<name sortKey="Zhang, Xiumei" sort="Zhang, Xiumei" uniqKey="Zhang X" first="Xiumei" last="Zhang">Xiumei Zhang</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Lu, Xinhua" sort="Lu, Xinhua" uniqKey="Lu X" first="Xinhua" last="Lu">Xinhua Lu</name>
</noRegion>
<name sortKey="Cahill, David M" sort="Cahill, David M" uniqKey="Cahill D" first="David M" last="Cahill">David M. Cahill</name>
<name sortKey="Kong, Lingxue" sort="Kong, Lingxue" uniqKey="Kong L" first="Lingxue" last="Kong">Lingxue Kong</name>
<name sortKey="Rookes, James E" sort="Rookes, James E" uniqKey="Rookes J" first="James E" last="Rookes">James E. Rookes</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000448 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000448 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31681361
   |texte=   Nanoapplication of a Resistance Inducer to Reduce Phytophthora Disease in Pineapple (Ananas comosus L.).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31681361" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024